

GNAOI Data Reduction Software

Software Non-Functional Requirements

Kathleen Labrie

Science User Support Department

V1.1 – 16 September 2019

Revision History
V1.0 – 29 April 2019 Kathleen Labrie
V1.1 – 16 September 2019 Kathleen Labrie

Document ID: GNAOI-SRS-101_DRSoftwareNonFunctionalReqs

Table of Contents

1. Introduction ... 1
1.1 Purpose .. 1
1.2 Scope ... 1
1.3 Overview .. 2
1.4 References ... 2

2. Definitions ... 2
2.1 Language ... 2
2.2 Acronyms ... 3

3. Nonfunctional Requirements .. 3
3.1 Nonfunctional Requirements from DRAGONS .. 3

3.1.1 Comments on requirements Error! Bookmark not defined.
3.1.2 Requirements non-applicable to this project Error! Bookmark not defined.
3.1.3 Requirements that can be de-scoped Error! Bookmark not defined.

3.2 Nonfunctional Requirements Specific to GMOS LS LSST... 14
4. Detailed Revision History .. 15

1. Introduction

1.1 Purpose

This document serves as a guide to designers, developers, and testers who are responsible for
the engineering of the GNAOI Data Reduction Software project. It contains the non-functional
requirements for the design, the development, and the testing the software.

1.2 Scope

This document is limited to the nonfunctional requirements. A companion document presents the
top-level requirements which are mostly functional requirements.

1.3 System Overview

Gemini North Adaptive Optics Imager (GNAOI) is a planned imager that will be used with both the
planned Gemini North Multi-Conjugate Adaptive Optics system (GNAO), and a planned Ground
Layer Adaptive Optics system (GLAO). GNAOI will use a single HAWAII-4RG detector.

GNAO will provide an f/32 beam to the instrument. GLAO will provide and f/16 beam. A single set
of camera optics in GNAOI will give a field of view of 85 arcseconds square with GNAO (which
will correct a 2-arcminute diameter circular field) and 170 arcseconds square with GLAO (or
indeed in natural seeing).

The imager will be provided with a suite of broad and narrow band filters that will support a broad
range of science applications. The core wavelength regime is 0.9 - 2.5um, though a strong
consideration is to expand this to 0.6 - 5um.

Gemini already has data reduction primitives and recipes for near-infrared imaging. Those will be
available to GNAOI. The GNAOI team is requested to reuse as many existing tools as possible
to avoid duplication and to avoid unnecessarily increasing the size of the code base, and as the
result the maintenance burden. Improvements to existing routines will be welcomed.

The GNAOI Data Reduction Software will:

 Generate automatically or semi-automatically scientific quality calibrated products;

 Generate automatically “quicklook” / ”fast reduction” products for target-of-opportunity
follow-up assessment;

 Generate automatically data quality assessment products.

The scope of the project does not include scientific analysis tools.

The GNAOI data reduction software will use Gemini’s DRAGONS pipeline infrastructure. It will
use Astrodata and be built to work with DRAGONS’ Recipe System.

1.4 References

 Internet Engineering Task Force RFC 2119, https://www.ietf.org/rfc/rfc2119.txt

 GNAOI-SRS-102_DRSoftwareTopLevelRequirements.docx

 DPSG-STD-102_CodingStandards.docx

 DPSG-STD-104_VarianceDQPixelUnits.docx

 DRAGONS repository: https://github.com/GeminiDRSoftware/DRAGONS

2. Definitions
Glossary, definitions of inputs, and any other organizational or workflow-related information that is
needed to understand the software requirement specification.

2.1 Language

Adapted from Internet Engineering Task Force RFC 2119.

 MUST: This word, or the term “REQUIRED”, mean that the definition is an absolute
requirement of the specification.

 MUST NOT: This phrase means that the definition is an absolute prohibition of the
specification.

https://www.ietf.org/rfc/rfc2119.txt
https://github.com/GeminiDRSoftware/DRAGONS

 SHOULD: This word, or the adjective “RECOMMENDED”, mean that there may exist
valid reasons in particular circumstances to ignore a particular item, but the full
implications must be understood and carefully weighed before choosing a different
course.

 SHOULD NOT: This phrase, or the phrase “NOT RECOMMENDED” mean that there
may exist valid reasons in particular circumstances when the particular behavior is
acceptable or even useful, but the full implications should be understood and the case
carefully weighed before implementing any behavior described with this label.

 MAY: This word means that an item is truly optional.

2.2 Acronyms

 DR: Data Reduction

 GOA: Gemini Observatory Archive

 ICD: Interface Control Document

 QA : Quality Assessment

 QL : Quick-Look

 SQ : Science Quality

 SUSD: Science User Support Department

 SUSD-DR: Science User Support Department Data Reduction Staff

3. Nonfunctional Requirements

The nonfunctional requirements listed here should apply more or less system-wide and generally
are those requirements that cannot obviously be associated with a use case.

When a requirement refers to an “approval”, the process is essentially to consult with the SUSD
data reduction team to ensure that the request is justified and necessary. The team will evaluate
the request and discuss possible other solutions. It should be possible to approve or deny the
request within a day or two.

3.1 Nonfunctional Requirements from DRAGONS

The software written for this project must follow the nonfunctional requirements already
established for DRAGONS.

Name SRS-NFR-001 – Python

Summary The code base must be written in Python

Rationale Gemini has adopted Python for data reduction software. The staff who will
maintain the code have expertise in Python. The DRAGONS infrastructure is
written in Python.

Requirements The code base must be written in Python and use Python modules. (A
handful of exception might be considered, see NFR in References box.)

References SRS-NFR-003, SRS-NFR-010, SRS-NFR-011, SRS-NFR-012, SRS-NFR-018

Name SRS-NFR-002 – Python version

Summary The software must run on Python 3.6 and above

Rationale Python 2.7 is being phased out.

Requirements The software must run on Python 3.6 or above as distributed by Anaconda.
The software may also be compatible with Python 2.7.x, but this is optional.

References SRS-NFR-003

Name SRS-NFR-003 – AstroConda and external dependencies

Summary Non-Gemini dependencies should be limited to software with 3-clause BSD
license and to software included in AstroConda, the Anaconda astronomy
distribution.

Rationale The software will be distributed to third-parties as Open-Source software.
Therefore, licensing conflicts are to be avoided. Also, it is important to ensure
easy installation of the software and of all its dependencies. AstroConda
takes care of that.

Requirements All the dependencies should be contained within the AstroConda channel,
DRAGONS, and the dependencies of those software. If other modules are
believed to be required, approval from SUSD-DR must be obtained.
DRAGONS is distributed under the 3-clause BSD license. SUSD-DR reserves
the right to restrict the use of a dependency if it is found to be incompatible
with our license or other conflicts arise. Finally, the software must not use or
depend on proprietary software like IDL, matlab, etc.

References SRS-NFR-010

Name SRS-NFR-004 – AstroData

Summary All MEF dataset access must be done with DRAGONS’ Astrodata

Rationale The DRAGONS’ recipe_system package requires the data to be passed
around as AstroData objects. Astrodata allows more instrument agnostic code
to be written, encouraging code re-use.

Requirements All GNAOI datasets must be accessed with the AstroData class. This includes
pixel access, binary table access, and header access. The header access in
particular must be done through a descriptor when the info is reflected in one
of the standard, already defined descriptors.

The AstroData class is built around astropy’s NDData.
Within that structure, the pixels are stored as NumPy ndarray and should be
manipulated with numpy. The binary tables are represented with astropy.table
Table class. Consult the Astrodata documentation for more information.

References SRS-NFR-005

Name SRS-NFR-005 – recipe_system

Summary The software must use the RecipeSystem to process the data

Rationale The RecipeSystem is the Python infrastructure that automates the processing
of the data. This is Gemini’s data reduction platform. The package is named
recipe_system.

Requirements The data reduction must be done with the RecipeSystem. The algorithms
must be wrapped in primitives and the reduction controlled by recipes.

References

Name SRS-NFR-006 – gnaoi_instrument

Summary The Astrodata instrument definition software must be developed in a package
named gnaoi_instrument.

Rationale For Astrodata to recognize the GNAOI data, a configuration layer needs to be
written. This includes the tags and the descriptors, and any necessary lookup
tables. No data reduction software belongs in this package.

During development of new instruments by third-party teams the work will be
done in a xxx_instrument package that will follow the same structure as the
main gemini_instruments package for easy integration later on.

Requirements The GNAOI Astrodata instrument definition software must be developed in an
Astrodata support package named gnaoi_instrument located in the same
directory as gnaoidr (SRS-NFR-007) in the GNAOIDR git repository hosted in
the GeminiDRSoftware github organization (SRS-NFR-015).

References SRS-NFR-007, SRS-NFR-015

Name SRS-NFR-007 – gnaoidr

Summary The data reduction algorithms, the primitives and recipes must be developed
in a package named gnaoidr

Rationale No tags or descriptor definition should be found in this package. This package
is for reduction algorithms. This package can import modules with core
algorithms.

During development of new instruments by third-party teams the work will be
done in a xxxdr package that will follow the same structure as the main
gemini_instruments package for easy integration later on.

Requirements The GNAOI data reduction software must be developed in a recipe_system
support package named gnaoidr located in the same directory as
gnaoi_instrument (SRS-NFR-006) in the GNAOIDR github repository (SRS-
NFR-015).

References SRS-NFR-006, SRS-NFS-015

Name SRS-NFR-008 – NumPy

Summary The use of NumPy is recommended for computational algorithms

Rationale NumPy is a mature package that offers a lot of optimized computational
functions and methods. Also, the pixel arrays in an AstroData object are
numpy.ndarrays.

Requirements The use of NumPy is recommended and strongly encouraged for
computational algorithms.

References http://www.numpy.org

Name SRS-NFR-009 – Astropy

Summary The use of Astropy is recommended, whenever appropriate

Rationale The astropy package is well supported and growing fast. It already contains a
lot of very useful functionalities developed for astronomy by astronomers.
There is no point re-inventing the wheel if a functionality is already in Astropy.

Requirements The use of Astropy is recommended and strongly encouraged.

References http://www.astropy.org

Name SRS-NFR-010 – IRAF

Summary The software must not depend on IRAF

Rationale IRAF is reaching its end-of-life. Long-term support by NOAO has ended.
Also, Gemini is no longer hiring IRAF programmers, hence long-term
maintenance of IRAF dependencies would become difficult.

Requirements There must be no calls to IRAF tasks or import of PyRAF.

References

Name SRS-NFR-011 – C-extensions

Summary C-extensions may be allowed, if required for performance

Rationale It might happen that a computationally intensive step is unacceptably slow in
Python. If this happen, writing that part of the software in C should help
improve performance.

Requirements If required for performance, C-extensions may be considered but require
justification followed by approval from SUSD-DR. C-extensions are to be
considered only in extreme cases where the performance benefits are truly
significant.

References SRS-NFR-001, SRS-NFR-012

Name SRS-NFR-012 – Cython

Summary C-extensions must be implemented with Cython

Rationale Cython is favored for its simplicity of usage, and simplicity of installation since
it comes with AstroConda.

Requirements C-extensions, if approved by SUSD-DR, must be implemented with Cython.

References SRS-NFR-011

Name SRS-NFR-013 – Installation

Summary The installation of the software must be possible using the “python setup.py
<command>” utility, and it must be possible to package and distribute the
software through conda.

Rationale The installation of the software must be easy, straightforward, and not prone
to mistakes. For release, the software will be wrapped into the DRAGONS
conda package. But during development and for internal deployment, the
standard setuptools utility will be used. Gemini will be responsible for the
building of conda packages.

Requirements The GNAOIDR package requires its own setup.py. The standard installation of
the package must not require the user to type anything more than “python
setup.py install” (or “pip install” if bdist_wheel is used to package).

References

Name SRS-NFR-014 – Open-source

Summary The code base must be freely available and distributable under the AURA
license used by DRAGONS.

Rationale The Gemini data reduction code has always been and must always be
distributed freely. The Gemini data reduction code base uses an AURA
license. Any new software will be distributed under that open-source license.

Requirements The new software must be open-source and distributed under the AURA
license.

References

Name SRS-NFR-015 – Revision control

Summary The code must be under revision control and stored in a Gemini Observatory
Data Reduction Software github repository named GNAOIDR.

Rationale Gemini data reduction is kept in the github collection:
https://github.com/GeminiDRSoftware. A GNAOIDR repository will be
created in that collection. GNAOI DR team and SUSD-DR members are given
full access to the repository.

Configuration management and revision control is required for Gemini DR
software.

Requirements The software must be under revision control and stored in the GNAOIDR
repository located in the Gemini DR Software github collection,
https://github.com/GeminiDRSoftware. The GNAOI DR team and SUSD-DR
members are given full access to the GNAOIDR repository.

References

Name SRS-NFR-016 – Unit tests

Summary Each function should be unit tested. The tests must pass.

Rationale Unit tests are useful during development and during maintenance to ensure
robustness and stability.

Requirements Each function and method should be unit tested. The tests must pass for the
software to be accepted. The tests should pass on committed code.

References SRS-NFR-017

Test coverage wisdom:
http://www.artima.com/forums/flat.jsp?forum=106&thread=204677

Name SRS-NFR-017 – pytest

Summary Unit tests must use pytest.

Rationale pytest is the test utility adopted by Astropy and now fully adopted by Gemini.

Requirements Unit tests must use pytest.

References SRS-NFR-016

Name SRS-NFR-018 – Coding standards

Summary The code must adhere to the Gemini data reduction software coding
standards

Rationale The maintainability of software is greatly simplified when the code and the
style is uniform across the code base. Adhering to a coding standard also
help minimize mistakes. SUSD has already established coding standards for
its Python software; it is based mostly on PEP8 with a few adaptions.

Requirements The code must adhere to the Gemini data reduction software coding
standards. When not specified in the Gemini document, PEP8 must be
followed.

References DPSG-STD-102_CodingStandards.docx,
https://www.python.org/dev/peps/pep-0008/, SRS-NFR-019

https://github.com/GeminiDRSoftware
https://github.com/GeminiDRSoftware
http://www.artima.com/forums/flat.jsp?forum=106&thread=204677
https://www.python.org/dev/peps/pep-0008/

Name SRS-NFR-019 – pylint

Summary A pylint score greater than 7 out of 10 and the absence of specific pylint error
or warnings must be achieved

Rationale pylint is a good tool to catch violation of coding standards and to create better,
cleaner code. The Python community recommends a score of at least 7 to
deem the code “good”.

Requirements A pylint score > 7 out 10 should be achieved. In particular, the code must be
free of variable errors/warnings (eg. unused variables). Other such rules might
be added, if necessary, as we learn about common issues. The pylintrc in
DRAGONS/gempy/support_files must be used to define the scoring rules
specific to the DRAGONS software (a better match to our coding standards
than the default definitions).

References SRS-NFR-018

Name SRS-NFR-020 – Primitives ICD

Summary The primitives ICD must be respected (primitive name and output suffix)

Rationale A primitive of a given name is expected to apply a specific transformation
regardless of instrument. For example, flatCorrect will apply the flat field
correction, nothing less, nothing more, and any primitives applying the flat field
correction must be named “flatCorrect”. This helps users understand what a
recipe is doing and what is really happening to the data.

Similarly, a primitive of a given name writing to disk must be appending a
specific suffix to the file name to help identify the products on disk. For
example, flatCorrect must append the suffix _flatCorrected.

Requirements The primitive ICD defines the processes associated with a given primitive
name and its associated output suffix. Eg. The primitive flatCorrect must
always applies and only applies the flat correction, and must append to the
output’s filename the suffix _flatCorrected, if writing to disk.

References Primitives ICD (not yet available, though the primitives exist. Look at code for
primitives names and the parameter files for suffix setting in the meantime.)

Name SRS-NFR-021 – Descriptors ICD

Summary The Descriptor ICD must be respected.

Rationale The Descriptors are critical to the functioning of Astrodata and the
RecipeSystem, and essential to instrument agnostic code.

Requirements A specific set of descriptors (see reference below) must be implemented for
the GNAOI AstroData types. The meaning of the descriptors must be
respected.

References AstroData User’s Manual Appendix A – List of descriptors (http://astrodata-
user-manual.readthedocs.io/en/latest/)

Name SRS-NFR-022 – Documentation

Summary Both user and programmer documentation must be delivered

Rationale Users must know how to use the software and what it does. The
programmers must know how to maintain the software, how it works, and how
to add to it.

Requirements Both a User Manual and a Programmer Manual must be delivered with the
software.

References SRS-NFR-023.

Name SRS-NFR-023 – Sphinx

Summary Documentation must be written for Sphinx

Rationale Sphinx is widely used in the Python community and has become the go-to tool
for Python software documentation. One source can produce HTML pages
and PDF (via latex).

Requirements The user manual and the programmer manual must be written for Sphinx
using the ReST markdown language.

References http://sphinx-doc.org

Name SRS-NFR-024 – Docstrings

Summary The docstrings must follow the NumPy format and standards

Rationale NumPy is a reference in the Python community. The Astropy project has also
adopted the NumPy format and standards for its in-code documentation.

Requirement
s

The docstrings must follow the NumPy format and standards. Part of this
standard is that each function or method, each class, each module should
have a properly written docstring.

References https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.tx
t

Name SRS-NFR-025 – Scientific flow charts

Summary The flow of the data, in scientific terms, must be documented

Rationale It is important to identify how the data needs to be processed, scientifically,
before we can identify the necessary Recipes and Primitives to be used by the
RecipeSystem. Also, it is important to document the data reduction in a
format understandable by the users to avoid the “black box” effect.

Requirements The flow of the data, in scientific terms, must be documented. This includes
the science observation and all calibrations, for all the modes and type of data
offered by the instrument. Diagrams and flow charts are strongly
recommended.

References SRS-NFR-026

Name SRS-NFR-026 – recipe_system flow charts

Summary The flow of the data in the RecipeSystem must be documented

Rationale A RecipeSystem flow chart shows how the scientific flow charts are translated
into a flow that is compatible with the RecipeSystem. This helps draw the list
of primitives required and how the recipes need to stream the data to produce
the desired products in an automated way, even if the data is coming in one
dataset at a time (which is the case at night). The RecipeSystem flow charts
are expected to differ somewhat from the Scientific flow charts.

Requirements A RecipeSystem flow chart must use the name of the primitives and recipes it
uses, and must identify the streams being used. RecipeSystem flow charts
must be created for the processing of the science observations and for the
processing of the calibrations, for all the modes and type of data offered by the
instrument.

References SRS-NFR-025

https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt
https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt

Name SRS-NFR-027 – QA mode performance

Summary The QA processing must be fast enough to be useful for nighttime operations

Rationale The purpose of the QA is to help the observer assess the data and assess the
sky condition in order to make the best, informed decisions at night.
Therefore, near-real time feedback from the pipeline is necessary.

Requirements The QA processing must be fast enough to be useful for nighttime operations.
Specifically, this means being able to keep up with a typical science observing
sequence on a quad core 2.8GH machine with 16 GB of RAM, locally, with a
standard 7200 rpm disk.

References The raw data will be on a remote NFS disk. The first step, the prepare
primitive, copies the file locally. Delays associated to the initial NFS transfer
are not GNAOI team’s responsibility.

Name SRS-NFR-028 – Hardware x86

Summary The software must run x86-style hardware

Rationale Gemini Operations machine are x86-style hardware. The Gemini community
uses, in a large majority, x86-style hardware (Linux PCs and Macs).

Requirements The software must run on standard 64 bit x86-style hardware and must not
require GPUs, or any other special hardware.

References

Name SRS-NFR-029 – Hardware configuration

Summary The software must require only one machine

Rationale Reduce unnecessary complexity. Also, the typical user does not have access
to clusters and is normally equipped with one desktop and/or a laptop.

Requirements The software must require one machine: no clusters or client-server systems,
for example.

References

Name SRS-NFR-030 – Multiple instances

Summary It must be possible to run multiple instances without conflict

Rationale Independent datasets do not need to be processed sequentially. Therefore,
the system must allow the users to launch multiple reduction without worry
that they will interfere with each other.

Requirements It must be possible to run multiple instances on the same machine with the
same user ID without those instances interfering with each other. Typically,
the independent data sets are stored in different directories.

References

Name SRS-NFR-031 – Platform

Summary The software must support Linux (CentOS 7) and Mac OS X (10.12+)

Rationale The large majority of the Gemini community and its staff are Linux and/or Mac
OS X users. Gemini Operations is Linux-based, with the current officially
support OS being CentOS 7.
(This is a moving target that needs updating once in a while as new OS’s are
released.)

Requirements The software must compile, run, and generally be fully compatible with the
Linux and Mac OS X platform. For Linux, the base OS is CentOS 7. For Mac
OS X, circa April 2019, the base OS version is set to 10.12, Sierra. It likely to
change by the time the software is delivered, however. Yet, it is expected that
those two platforms will serve as common lowest denominator for several
years.

References

Name SRS-NFR-032 – MEF

Summary The inputs, outputs, and intermediate pixel or table datasets must be MEF
files

Rationale All of Gemini’s facility instrument data produce MEF files. Gemini’s data
reduction software therefore is developed to expect and produce MEF files.

Requirements All the inputs, outputs, and intermediate pixel or table datasets written to disk
must be formatted as MEF files. Any outputs, final or intermediates, must
have named and versioned extensions (see SRS-NFR-033, 034, 035).

References SRS-NFR-033, SRS-NFR-034, SRS-NFR-035

Name SRS-NFR-033 – VARDQ

Summary The software must calculate and propagate the variance and data quality
planes.

Rationale Variance: a scientific result is meaningless without an error estimate. Data
quality: Bad pixel values should not be used in calculations. Astrodata will
take care of most variance and data quality plane calculation and propagation
through the NDData class.

Requirements The software must calculate and propagate, at every step, the variance plane
and the data quality plane as described in the Gemini Data Reduction “Guide
to Variance and Data Quality extensions and to Pixel Data Units”. Astrodata
will take care of most variance and data quality plane calculation and
propagation through the NDData class.

References DPSG-STD-104_VarianceDQPixelUnits.docx, SRS-NFR-034.

Name SRS-NFR-034 – Extension names

Summary The FITS extension names must follow the coding standards, eg. SCI, VAR,
DQ

Rationale Astrodata expects certain extensions to be named a specific way for loading
and writing MEF files. Gemini’s FITS standard is to use SCI, VAR, DQ.

Requirements The extension naming must follow the coding standards. Science pixel
extensions are SCI, variance planes are VAR, data quality planes are DQ,
detected object catalog are OBJCAT, etc. New names for new types must be
approved by SUSD-DR.

References SRS-NFR-018, DPSG-STD-102_CodingStandards.docs (GP-Py-Name-32)

Name SRS-NFR-035 – FITS standard

Summary The software and the data must be compliant with the latest FITS standard
specifications.

Rationale Interoperability with other software.

Requirements Inputs are assumed to be compliant, if not, the software must fix them.
Outputs (final or intermediate) must be compliant.

References http://fits.gsfc.nasa.gov/fits_standard.html

Name SRS-NFR-036 – WCS

Summary The software must provide FITS standard World Coordinate Systems even
when storing and using more complex format.

Rationale Interoperability with other software. This does not preclude the use of more
complex WCS representations but some WCS keywords must be found in the
FITS headers to provide an approximate representation that third-party
software can recognize.

Requirements Inputs are assumed to be compliant, if not, the software must fix them.
Outputs (final or intermediate) must be compliant.

References http://fits.gsfc.nasa.gov/fits_wcs.html

Name SRS-NFR-037 – Metadata Housekeeping

Summary The software must maintain the Gemini housekeeping metadata

Rationale Gemini housekeeping metadata is used for archival purposes.

Requirements Housekeeping metadata from the raw frames, like program and observation
ID, must be propagated at each step and be present in any outputs. The
minimum list is:

 DATALAB

 DATE-OBS

 GEMPRGID

 INSTRUME

 OBSCLASS

 OBSID

 OBSTYPE

 (TIME-OBS) [optional if DATE-OBS already contains the time]

References

Name SRS-NFR-038 – Metadata History

Summary Outputs must contain metadata listing the processing history and the version
numbers of the software used.

Rationale Scientific reproducibility

Requirements All outputs must contain processing information in the form of metadata listing
the processing history and the version numbers of the software used. Each
primitive must timestamp the PHU of the output file.

References The function mark_history in DRAGONS’ gempy/gemini/gemini_tools.py is the
format currently in use.

http://fits.gsfc.nasa.gov/fits_standard.html
http://fits.gsfc.nasa.gov/fits_wcs.html

Name SRS-NFR-039 – Metadata Provenance

Summary Outputs should contain provenance metadata

Rationale Scientific reproducibility

Requirements All outputs should contain provenance metadata, including but not limited to
the unique identification of all input data.

(This is an objective to be met at some point. As of April 2019, Gemini has no
mechanisms to do that in a complete and absolute way.)

References Gemini has currently no specifications for this and is opened to proposals.

Name SRS-NFR-040 – Display

Summary Image displays must work with DS9

Rationale DS9 is the image display used by a large fraction of the astronomy
community.

Requirements Image displays must work with DS9. Other displays can be supported, but
DS9 is a requirement.

References

Name SRS-NFR-041 – Graphics

Summary Graphics must use X11 and allow for remote display

Rationale Compatibility with current Gemini Operations procedures and hardware.
Compatibility with most users’ display tools.

Requirements Any display of graphics must work correctly over X11 to a remote display.
VNC do not count, it must be simple X.

References

Name SRS-NFR-042 – Graphics to disk

Summary There must be an option to output to files on disk rather than display on
screen

Rationale When running the reduction in the background, it can be useful to keep a
record of graphics, for example for use in the archive.

Requirements There must be an option to generate standard graphics files, eg. png, and
send them to disk rather than display to screen. Eg. of filename format:
datasetname_primitive_timestamp.png

References

Name SRS-NFR-043 – Quality Assessment (QA) mode definition

Summary QA must be automatic and must not require calibrations to complete

Rationale The purpose of the QA mode is to assist the nighttime observer in assessing
1) the sky conditions (seeing, sky brightness, cloud coverage) as measured
from the data, 2) the quality of the data (eg. making sure it “looks” okay, that
nothing is saturated, etc.). This information is used by the observer in the
decision making required to navigate the queue plan. The observer does not
have time to operate the pipeline. Scientific accuracy is not needed.

Requirements The Quality Assessment (QA) mode must run automatically, without requiring
observer interaction. Calibrations are sought but if none is found, the software
must carry on with the processing without applying the correction. Scientific
accuracy is not required.

References

Name SRS-NFR-044 – Fast Science / Quick-Look (QL) mode definition

Summary QL must be automatic and requires calibrations to complete

Rationale The purpose of the QL mode is to assist the astronomer in assessing 1) the
quality of the data, 2) the scientific content of the data, 3) the scientific
potential of the data, with the minimal amount of effort and quickly. The
processing does not need to be optimized but should be close to scientifically
valid in most cases. If expediency is required, canned calibrations can be
used. Use case: LSST follow-up.

Requirements The Quick-Look (QL) mode must run automatically, without requiring user
interactions. Specifying the data and launching the reduction can be done by
a user or an automatic dispatcher listening to the OCS. Processed calibrations
are required. The absence of calibration will cause the software to abort and
exit. Scientific accuracy could be achievable for some cases (if best
calibrations are available.)

References

Name SRS-NFR-045 – Science Quality (SQ) mode definition

Summary SQ should be automatic, require calibrations to complete, and the products
must scientifically correct

Rationale The purpose of the SQ mode is to generate scientifically accurate and
optimized products. Automation is highly preferred but the ability to optimize
and customize the reduction is also important. The processing must lead to
scientifically valid products.

Requirements The Science Quality (SQ) mode should run automatically, without requiring
user interactions other than 1) launching the reduction, 2) specifying which
data to run the software on, 3) optimizing critical steps too difficult to optimize
automatically, or too critically dependent on the scientific objectives of the
program. Interactivity must be kept to a minimum. Processed calibrations
are required. The absence of calibration will cause the software to abort and
exit. Scientific accuracy is unconditionally required.

References

3.2 Nonfunctional Requirements Specific to GNAOI Data Reduction

At this time, there are no nonfunctional requirements defined specifically for the GNAOI Data
Reduction Project.

4. Detailed Revision History

v1.0 29 April, 2019 Kathleen Labrie

 Initial revision.

v1.1 16 September, 2019 Kathleen Labrie

 Minor revision to SRS-NRF-003 to emphasis the 3-clause BSD license
requirement.

